

OCXO OA936 - 10

- Stability from ±0.05ppm, good phase noise from a precision AT cut crystal.
- Standard and custom frequency range 1MHz to 1GHz.
- Ageing from ±1ppm first year.
- A standard hermetically sealed OCXO package providing a useful volume for the manufacture of high quality single oven specifications.

Standard options:

frequency range:	1MHz ~ 1GHz			
accuracy codes:	(A)	(B)	(C)	
temperature tolerance	±0.05ppm	±0.1ppm		
temperature range	(0 +50)°C	(-10 +60)°C	(-20 +70)°C	
output codes:	(S)		(L)	
output	sine wave, $0dBm$ into 50Ω		1OS 15pF, 45% ~ 55%	
harmonics -30dBc max.	<2ns max. rise and fall			
supply voltage codes:	(V1)*	(V2)*	(V3)*	
supply voltage	+3.3Vd.c.	+5.0Vd.c.	+12.0Vd.c.	
voltage reference option*	+3.0Vd.c.	+4.5Vd.c.	+4.5Vd.c.	
-	*add suffix (R) for V_{rot} output on pin #2			

Generic specification:

stability:

against supply voltage change against load change ageing short term

ageing long term voltage trim V_t trim input impedance ± 0.02 ppm max. for $V_{\infty} \pm 5\%$ ± 0.02 ppm max. for load $\pm 10\%$ ± 0.005 ppm max. per day after 30 days continuous operation ± 1 ppm max. first year ± 10 ppm min. typical, linearity $\pm 5\%$ ± 100 K Ω min.

power supplies:

supply voltage V_{∞} start up current at min. temp. range quiescent current at max. temp. range warm up time insulation resistance

phase noise:

single sideband, 1Hz bandwidth

-90dBc/Hz, f +10Hz -125dBc/Hz, f +100Hz -140dBc/Hz, f +1kHz

temperature:

operating range $(0 +50)^{\circ}C$ $(-10 +60)^{\circ}C$ $(-20 +70)^{\circ}C$ storage range $(-40 +125)^{\circ}C$ $(-40 +125)^{\circ}C$ $(-40 +125)^{\circ}C$

Environmental conditions:

mechanical shock: MIL standard 202F, method 213, condition J thermal shock: MIL standard 202F, method 107, condition A vibration: MIL standard 202F, method 204, condition B

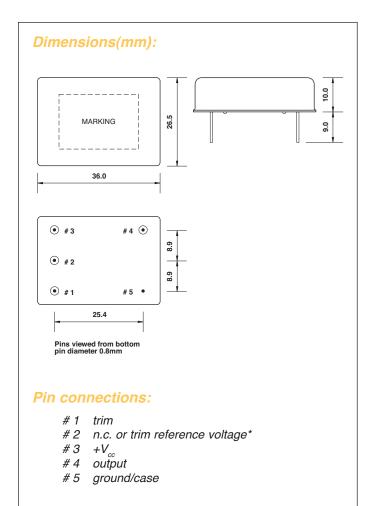
solderability: 5 seconds max. at +230°C, 3 seconds max. at +350°C

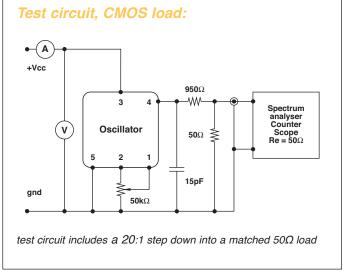
Marking: part number and frequency on high temperature

metalised polyester label

Ordering code: standard specification: OA936-10 A S V2* - 10.00M

OA936-10 = series generic code


A temp. tol. and temp. range code: $A = \pm 0.05ppm(0 + 50)$ °C


S output code: $S = sine wave output, 0dBm into 50\Omega$

V2* supply voltage code: V2 = +5Vd.c. supply

*add suffix (R) for V_{ref} output on pin #2 output frequenc: 10.00M = 10.000MHz

Custom specification: part number issued with custom specification and drawing

