

- ±0.5ppm, excellent phase noise, low ageing, wide frequency range.
- Manufactured to standard and custom specifications over the frequency range of 1MHz to 1GHz.
- Precision crystals provide outstanding long term ageing from ±4.6ppm over 10 years.

		# # ·
Stand	ara a	ntione
Jiaiiu	alu u	ptions:
		P 41 0 1 1 0 1

frequency range:	1MHz ~ 1GHz				
accuracy codes:	(A)	(B)	(C)		
temperature tolerance	±0.5ppm		±2.0ppm		
temperature range	(0 +50)°C	(-20 +70)°C	(-40 +70)°C		
output codes:	(S)		(L)		
output	sine wave, 0dBm into 50	Ω C N	1OS 15pF, 45% ~ 55%		
harmonics -30dBc max.	<2ns max. rise and fall				
supply voltage codes:	(V1)*	(V2)*	(V3)*		
supply voltage	+3.3Vd.c.	+5.0Vd.c.	+12.0Vd.c.		
voltage reference option*	+3.0Vd.c.	+3.0Vd.c.	+3.0Vd.c.		
	*add suffix (R) for V _{ref} output on pin #2				

Generic specification:

stability:

against supply voltage change against load change ageing short term

ageing long term voltage trim V, trim input impedance

power supplies:

supply voltage V_{cc} supply current insulation resistance

phase noise:

single sideband, 1Hz bandwidth

 ± 0.02 ppm max. for $V_{cc} \pm 5\%$ ±0.02ppm max. for load ±10% ±0.005ppm max. per day after 30 days continuous operation ±1.5ppm max. first year ±10ppm min. typical, linearity ±5% 100K Ω min.

+3.3Vd.c. +5.0Vd.c. +12.0Vd.c. 50mA max. frequency dependent $500Meg\Omega$ min., 100Vd.c.

> -80dBc/Hz, f₂+10Hz -100dBc/Hz, f +100Hz

temperature:

operating range storage range

-125dBc/Hz, f₂+1kHz

(0 +50)°C (-10 +60)°C (-40 +125)°C (-40 +125)°C

(-40 +70)°C (-40 +125)°C

TCXO series TA936 - 10 February 29th 2012

Environmental conditions:

mechanical shock: MIL standard 202F, method 213, condition J
thermal shock: MIL standard 202F, method 107, condition A
vibration: MIL standard 202F, method 204, condition B

solderability: 5 seconds max. at +230°C, 3 seconds max. at +350°C

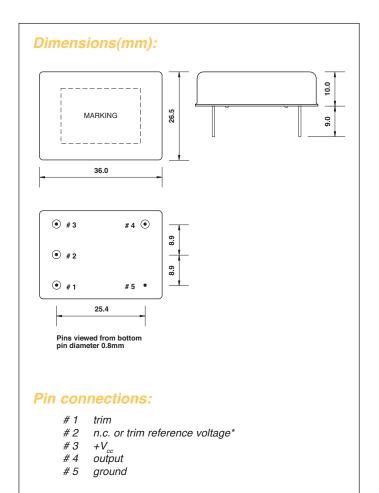
Marking: part number and frequency on high temperature

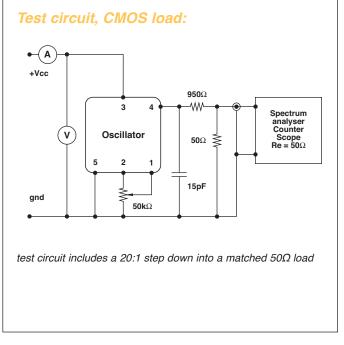
metalised polyester label

Ordering code:

standard specification: TA936-10 A S V2* - 6.40M

TA936-10 = series generic code


A temp. tol. and temp. range code: $A = \pm 0.5ppm(0 + 50)^{\circ}C$ S output code: S = sine wave output, $0dBm into 50\Omega$


V2* supply voltage code: V2 = +5Vd.c. supply

*add suffix (R) for V_{ref} output on pin #2

6.40M output frequency: **16.384M = 16.384MHz**

Custom specification: part number issued with custom specification and drawing

